Active Learning For The College Classroom  
By Paulson and Faust

BACKGROUND & DEFINITIONS

The past decade has seen an explosion of interest among college faculty in the teaching methods variously grouped under the terms 'active learning' and 'cooperative learning'. However, even with this interest, there remains much misunderstanding of and mistrust of the pedagogical "movement" behind the words. The majority of all college faculty still teach their classes in the traditional lecture mode. Some of the criticism and hesitation seems to originate in the idea that techniques of active and cooperative learning are genuine alternatives to, rather than enhancements of, professors' lectures. We provide below a survey of a wide variety of active learning techniques which can be used to supplement rather than replace lectures. We are not advocating complete abandonment of lecturing, as both of us still lecture about half of the class period. The lecture is a very efficient way to present information but use of the lecture as the only mode of instruction presents problems for both the instructor and the students. There is a large amount of research attesting to the benefits of active learning.

"Active Learning" is, in short, anything that students do in a classroom other than merely passively listening to an instructor's lecture. This includes everything from listening practices which help the students to absorb what they hear, to short writing exercises in which students react to lecture material, to complex group exercises in which students apply course material to "real life" situations and/or to new problems. The term "cooperative learning" covers the subset of active learning activities which students do as groups of three or more, rather than alone or in pairs; generally, cooperative learning techniques employ more formally structured groups of students assigned complex tasks, such as multiple-step exercises, research projects, or presentations. Cooperative learning is to be distinguished from another now well-defined term of art, "collaborative learning", which refers to those classroom strategies which have the instructor and the students placed on an equal footing working together in, for example, designing assignments, choosing texts, and presenting material to the class. Clearly, collaborative learning is a more radical departure from tradition than merely utilizing techniques aimed at enhancing student retention of material presented by the instructor; we will limit our examples to the "less radical" active and cooperative learning techniques. "Techniques of active learning", then, are those activities which an instructor incorporates into the classroom to foster active learning.

TECHNIQUES OF ACTIVE LEARNING

Exercises for Individual Students

Because these techniques are aimed at individual students, they can very easily be used without interrupting the flow of the class. These exercises are particularly useful in providing the instructor with feedback concerning student understanding and retention of material. Some (numbers 3 and 4, in particular) are especially designed to encourage students' exploration of their own attitudes and values. Many (especially numbers 4 - 6) are designed to increase retention of material presented in lectures and texts.

1. **The "One Minute Paper"** - This is a highly effective technique for checking student progress, both in understanding the material and in reacting to course material. Ask students to take out a blank sheet of paper, pose a question (either specific or open-ended), and give them one (or perhaps two - but not many more) minute(s) to respond. Some sample questions include: "How does John Hospers define "free will"?", "What is "scientific realism"?", "What is the activation energy for a chemical reaction?", "What is the difference between replication and transcription?", and so on. Another good use of the minute paper is to ask questions like "What was the main point of today's class material?" This tells you whether or not the students are viewing the material in the way you envisioned.

2. **Muddiest (or Clearest) Point** - This is a variation on the one-minute paper, though you may wish to give students a slightly longer time period to answer the question. Here you ask (at the end of a class period, or at a natural break in the presentation), "What was the "muddiest point" in today's lecture?" or, perhaps, you might be more specific, asking, for example: "What (if anything) do you
Response to demonstration of other teacher-centered activity - The students are asked to

6. Critique Passes - This is a simple feedback and assessment format.

a. restate the material (for your sake and theirs); what is important in the reading (for their sake);

b. has real omissions (for your sake and theirs); what is important in the reading (for their sake);

c. is it intuitive (and not a coffee); accurately choose your questions which will point directly into

the reason for (or instead of) the omissions. Don't think your questions, where omissions are:

written and written. Always write your questions according to his explicit feedback; he who

wrote this sentence and then first adds, the second modifies their; your can also be used as an

alternative. This is an essay and an essay on the reading; the reading will not be used as an

alternative in-depth discussion of omissions to come; and the essay is also

not.

7. Daily Journal - This combines the advantages of the above three techniques, and allows for more

8. Affective Responses - Again, this is similar to the above exercises. This is not an

exercise on the concept of personal definition (often, personal selection, etc...).
Questions and Answers

While most of us use questions as a way of prodding students and instantly testing comprehension, there are simple ways of tweaking our questioning techniques which increase student involvement and comprehension. Though some of the techniques listed here are "obvious", we will proceed on the principle that the obvious sometimes bears repeating (a useful pedagogical principle, to be sure!).

The "Socratic Method" - Taking its namesake from the most famous gadfly in history, this technique in its original format involved instructors "testing" student knowledge (of reading assignments, lectures, or perhaps applications of course material to a wider context) by asking questions during the course of a lecture. Typically, the instructor chooses a particular student, presents her with a question, and expects an answer forthwith; if the "chosen" student cannot answer the question presented, the instructor chooses another (and another) until the desired answer is received. This method has come under criticism, based on claims that it singles out students (potentially embarrassing them), and/or that it favors only a small segment of the class (i.e., that small percentage of the class who can answer any question thrown at them). In addition, once a student has answered a question they may not pay much attention as it will be a long time before the teacher returns to them for a second question. In spite of these criticisms, we feel that the Socratic method is an important and useful one; the following techniques suggest variations which enhance this method, avoiding some of these pitfalls.

8. Wait Time - Rather than choosing the student who will answer the question presented, this variation has the instructor WAITING before calling on someone to answer it. The wait time will generally be short (15 seconds or so) - but it may seem interminable in the classroom. It is important to insist that no one raise his hand (or shout out the answer) before you give the OK, in order to discourage the typical scenario in which the five students in the front row all immediately volunteer to answer the question, and everyone else sighs in relief. Waiting forces every student to think about the question, rather than passively relying on those students who are fastest out of the gate to answer every question. When the wait time is up, the instructor asks for volunteers or randomly picks a student to answer the question. Once students are in the habit of waiting after questions are asked, more will get involved in the process.

9. Student Summary of Another Student's Answer - In order to promote active listening, after one student has volunteered an answer to your question, ask another student to summarize the first student's response. Many students hear little of what their classmates have to say, waiting instead for the instructor to either correct or repeat the answer. Having students summarize or repeat each others' contributions to the course both fosters active participation by all students and promotes the idea that learning is a shared enterprise. Given the possibility of being asked to repeat a classmates' comments, most students will listen more attentively to each other.

10. The Fish Bowl - Students are given index cards, and asked to write down one question concerning the course material. They should be directed to ask a question of clarification regarding some aspect of the material which they do not fully understand; or, perhaps you may allow questions concerning the application of course material to practical contexts. At the end of the class period (or, at the beginning of the next class meeting if the question is assigned for homework), students deposit their questions in a fish bowl. The instructor then draws several questions out of the bowl and answers them for the class or asks the class to answer them. This technique can be combined with others (e.g., #8-9 above, and #2).

11. Quiz/Test Questions - Here students are asked to become actively involved in creating quizzes and tests by constructing some (or all) of the questions for the exams. This exercise may be assigned for homework and itself evaluated (perhaps for extra credit points). In asking students to think up exam questions, we encourage them to think more deeply about the course material and to explore major themes, comparison of views presented, applications, and other higher-order thinking skills. Once suggested questions are collected, the instructor may use them as the basis of review sessions, and/or to model the most effective questions. Further, you may ask students to discuss the merits of a sample of questions submitted; in discussing questions, they will significantly increase their engagement of the material to supply answers. Students might be asked
15. The Pre-Theoretical Intuition Quiz - Students often initially react emotionally to the instructor's initial presentation of ideas or data. This can create a barrier to learning, as students may feel pressured to agree or disagree with the instructor's perspective. It is important for the instructor to establish a safe and respectful environment that encourages open discussion and critical thinking.

Critical Thinking Motivators

14. Questions - This is a particularly useful method of testing student understanding when they are explaining a concept in detail. Questions can help to clarify misunderstandings and encourage deeper thinking. The instructor can use questions to probe for deeper understanding and to encourage students to think creatively about the material.

13. Flash Cards - A variation of the Finger Drill approach, this method involves students writing short answers or definitions on flashcards. When a question is asked, students can quickly provide their answer, reinforcing their understanding of the material.

12. True or False - The second of two possible feedback methods, this exercise challenges students to identify and correct misconceptions in their understanding of the material. It can help to identify areas where further instruction or clarification is needed.

Immediate Feedback

11. Difficulty, effectiveness, and duration of assessment are important considerations in determining the most appropriate method. Different assessments may be more effective for different topics or student populations. It is important to choose an assessment method that aligns with the goals of the course and the learning objectives.
"There are really no correct answers to moral questions" and "Whatever a society holds to be morally right is in fact morally right". After students have responded to the questions individually, have them compare answers in pairs or small groups and discuss the ones on which they disagree. This technique may also be used to assess student knowledge of the subject matter in a pre-post-lecture comparison. The well-known "Force Concept Inventory" developed by Hestenes to measure understanding of force and motion is another good example of this.

16. **Puzzles/Paradoxes** - One of the most useful means of ferreting out students' intuitions on a given topic is to present them with a paradox or a puzzle involving the concept(s) at issue, and to have them struggle towards a solution. By forcing the students to "work it out" without some authority's solution, you increase the likelihood that they will be able to critically assess theories when they are presented later. For example, students in a course on theories of truth might be asked to assess the infamous "Liar Paradox" (with instances such as 'This sentence is false'), and to suggest ways in which such paradoxes can be avoided. Introductory logic students might be presented with complex logic puzzles as a way of motivating truth tables, and so forth. In scientific fields you can present experimental data which seems to contradict parts of the theory just presented or use examples which seem to have features which support two opposing theories.

**Share/Pair**

Grouping students in pairs allows many of the advantages of group work students have the opportunity to state their own views, to hear from others, to hone their argumentative skills, and so forth without the administrative "costs" of group work (time spent assigning people to groups, class time used just for "getting in groups", and so on). Further, pairs make it virtually impossible for students to avoid participating thus making each person accountable.

17. **Discussion** - Students are asked to pair off and to respond to a question either in turn or as a pair. This can easily be combined with other techniques such as those under "Questions and Answers" or "Critical Thinking Motivators" above. For example, after students have responded to statements, such as "Whatever a society holds to be morally right is in fact morally right" with 'true' or 'false', they can be asked to compare answers to a limited number of questions and to discuss the statements on which they differed. In science classes students can be asked to explain some experimental data that supports a theory just discussed by the lecturer. Generally, this works best when students are given explicit directions, such as "Tell each other why you chose the answer you did".

18. **Note Comparison/Sharing** - One reason that some students perform poorly in classes is that they often do not have good note-taking skills. That is, while they might listen attentively, students do not always know what to write down, or they may have gaps in their notes which will leave them bewildered when they go back to the notes to study or to write a paper. One way to avoid some of these pitfalls and to have students model good note-taking is to have them occasionally compare notes. The instructor might stop lecturing immediately after covering a crucial concept and have students read each others' notes, filling in the gaps in their own note-taking. This is especially useful in introductory courses or in courses designed for non-majors or special admissions students. Once students see the value of supplementing their own note-taking with others', they are likely to continue the practice outside of class time.

19. **Evaluation of Another Student's Work** - Students are asked to complete an individual homework assignment or short paper. On the day the assignment is due, students submit one copy to the instructor to be graded and one copy to their partner. These may be assigned that day, or students may be assigned partners to work with throughout the term. Each student then takes their partner's work and depending on the nature of the assignment gives critical feedback, standardizes or assesses the arguments, corrects mistakes in problem-solving or grammar, and so forth. This is a particularly effective way to improve student writing.
23. Connect/Map
   - A concept map is a way of illustrating the connections that exist between the pieces of information.

   The concept is defined and organized through the use of meaningful connections. Developing a concept map requires
   first identifying key ideas or concepts, and then organizing them in a way that reveals relationships among them.

22. Work on the Blackboard
   - In many problem-solving contexts, especially in science, students are asked to work on the blackboard and
   to explain their reasoning. This helps to clarify the students' understanding and to promote a collaborative learning environment.

21. Active Review Sessions
   - In the final review session, the students are asked to review the material and
   to answer questions or solve problems. This helps to reinforce the learning and
   to ensure that the students have understood the material.

20. Cooperative Groups in Class
   - Pose a question to be worked on in each cooperative group and
   have the groups share their responses with the class.

19. Cooperative Groups
   - These groups are formed to discuss the problem and
   to provide feedback on each other's ideas.

18. Learning Exercises
   - The students are asked to take a case study and
   to analyze the data presented.

17. Visual Lists
   - These lists are used to make a list of all the options.

16. Concept Maps
   - A concept map is a tool for visualizing the relationships among ideas.

15. Minding Maps
   - A mind map is a tool for organizing ideas in a hierarchical structure.

14. Concept Maps
   - A concept map is a tool for visualizing the relationships among ideas.

13. Concept Maps
   - A concept map is a tool for visualizing the relationships among ideas.

12. Concept Maps
   - A concept map is a tool for visualizing the relationships among ideas.

11. Concept Maps
   - A concept map is a tool for visualizing the relationships among ideas.

10. Concept Maps
   - A concept map is a tool for visualizing the relationships among ideas.

9. Concept Maps
   - A concept map is a tool for visualizing the relationships among ideas.

8. Concept Maps
   - A concept map is a tool for visualizing the relationships among ideas.

7. Concept Maps
   - A concept map is a tool for visualizing the relationships among ideas.

6. Concept Maps
   - A concept map is a tool for visualizing the relationships among ideas.

5. Concept Maps
   - A concept map is a tool for visualizing the relationships among ideas.

4. Concept Maps
   - A concept map is a tool for visualizing the relationships among ideas.

3. Concept Maps
   - A concept map is a tool for visualizing the relationships among ideas.

2. Concept Maps
   - A concept map is a tool for visualizing the relationships among ideas.

1. Concept Maps
   - A concept map is a tool for visualizing the relationships among ideas.
can be joined together to form a finished project. For example, students in a course in African geography might be grouped and each assigned a country; individual students in the group could then be assigned to research the economy, political structure, ethnic makeup, terrain and climate, or folklore of the assigned country. When each student has completed his research, the group then reforms to complete a comprehensive report. In a chemistry course each student group could research a different form of power generation (nuclear, fossil fuel, hydroelectric, etc.). Then the groups are reformed so that each group has an expert in one form of power generation. They then tackle the difficult problem of how much emphasis should be placed on each method.

26. **Role Playing** - Here students are asked to "act out" a part. In doing so, they get a better idea of the concepts and theories being discussed. Role-playing exercises can range from the simple (e.g., "What would you do if a Nazi came to your door, and you were hiding a Jewish family in the attic?") to the complex. Complex role playing might take the form of a play (depending on time and resources); for example, students studying ancient philosophy might be asked to recreate the trial of Socrates. Using various sources (e.g., Plato's dialogues, Stone's *The Trial of Socrates*, and Aristophanes' *The Clouds*), student teams can prepare the prosecution and defense of Socrates on the charges of corruption of youth and treason; each team may present witnesses (limited to characters which appear in the Dialogues, for instance) to construct their case, and prepare questions for cross-examination.

27. **Panel Discussions** - Panel discussions are especially useful when students are asked to give class presentations or reports as a way of including the entire class in the presentation. Student groups are assigned a topic to research and asked to prepare presentations (note that this may readily be combined with the jigsaw method outlined above). Each panelist is then expected to make a very short presentation, before the floor is opened to questions from "the audience". The key to success is to choose topics carefully and to give students sufficient direction to ensure that they are well-prepared for their presentations. You might also want to prepare the "audience", by assigning them various roles. For example, if students are presenting the results of their research into several forms of energy, you might have some of the other students role play as concerned environmentalists, transportation officials, commuters, and so forth.

28. **Debates** - Actually a variation of #27, formal debates provide an efficient structure for class presentations when the subject matter easily divides into opposing views or 'Pro'/\'Con' considerations. Students are assigned to debate teams, given a position to defend, and then asked to present arguments in support of their position on the presentation day. The opposing team should be given an opportunity to rebut the argument(s) and, time permitting, the original presenters asked to respond to the rebuttal. This format is particularly useful in developing argumentation skills (in addition to teaching content).

29. **Games** - Many will scoff at the idea that one would literally play games in a university setting, but occasionally there is no better instructional tool. In particular, there are some concepts or theories which are more easily illustrated than discussed and in these cases, a well-conceived game may convey the idea more readily. For example, when students are introduced to the concepts of "laws of nature" and "the scientific method", it is hard to convey through lectures the nature of scientific work and the fallibility of inductive hypotheses. Instead, students play a couple rounds of the Induction Game, in which playing cards are turned up and either added to a running series or discarded according to the dealer's pre-conceived "law of nature". Students are asked to "discover" the natural law, by formulating and testing hypotheses as the game proceeds.