5

Maui Community College

Course Outline

1.
Alpha and Number ICS151C

Course Title Introduction to C Programming
Credits 3

Date of Outline 10/10/2003

2. Course Description:
Introduces students to the C Programming Language, and an

Integrated Development Environment (IDE). Structured

programming, problem solving, algorithm development and

programming concepts are taught using a procedural language.
3. Contact Hours/Type: Three (3); Lecture/discussion/lab
4.
Prerequisites: ICS 111 with at least a C; or consent

Corequisites: None

Recommended Preparation: None

Approved by _____________________________________ Date________________

5.
General Course Objectives

Provide a base understanding of the C Programming Language, an Integrated

Development Environment (IDE), structured programming, problem solving,

algorithm development and programming concepts. This course will focus on developing conceptual understanding followed by programmatic implementation of those concepts, and will provide students with the opportunity to improve critical thinking and problems solving skills.

6.
Specific Course Objectives, Competencies, and Student Learning Outcomes

Upon successful completion of this course, the student should be able to:

Introduction:
1. Explain briefly the history of programming languages.

2. Describe structured programming.

3. Explain the sequence, selection and repetition control structures.

4. Explain the problem solving process used to create a computer program.

Design Tools:

5. Write simple algorithms using sequence, selection and repetition.

6. Write simple algorithms using the following design tools:

Report, screen and record layouts

IPO charts

Hierarchy charts

Pseudocode and flowcharts

Test data, expected results and desk check tables.

Beginning Programming:
7. Use an Integrated Development Environment (IDE) to create, save, retrieve, edit, print, compile, build and execute a simple program using the C programming language.

8. Implement previously created algorithms in the C IDE.

9. Distinguish between a variable, a named constant and a literal constant.

10. Select an appropriate name, data type and an initial value for a memory location,

11. Type cast data.

12. Use an assignment statement to assign data to a variable.

13. Include arithmetic expressions in an expression.

14. Get input using predefined functions.

15. Create a console application.

16. Use built-in mathematical functions.

17. Format numeric output in a C program.

18. Send program output to a file.

19. Write a function prototype.

20. Create and invoke a programmer defined function that accepts and returns values.

21. Understand a variable’s scope and lifetime.

22. Pass information by value and reference to a programmer defined function.

Intermediate Programming:
23. Use the sequence, selection and repetition control structures in a C program.

24. Write code that uses comparison and logical operators.

25. Write a C program that use nested control structures.

26. Working with characters and strings, be able to:

Control the case

Determine the number of characters in a string

Compare string contents

Manipulate characters within strings

Concatenate strings

Compare strings.

Data Structures:
27. Open, close, read and write to a sequential access data file.

28. Declare, initialize, store and update data in an array.

29. Display the contents of an array.

30. Access an array element.

31. Search an array.

32. Compute the average of an array’s contents.

33. Pass an array to a function.

34. Manipulate parallel arrays.

35. Manipulate a two-dimensional array.

36. Declare, initialize, store and update data in a structure.

37. Access structure members.

38. Pass a structure to a function.

39. Create an array of structures.

40. Convert parallel arrays to an array of structures.

41. Add and update data in an array of structures.

42. Search an array of structures.

7.
Recommended Course Content and Approximate Time Spent on Each Topic

1-3 Weeks:
Introduction (1-4)

2-5 Weeks:
Design Tools (5-6)

2-5 Weeks:
Beginning Programming (7-22)

2-5 Weeks
Intermediate Programming (23-26)

3-5 Weeks

Data Structures (27-42)
8.
Text and Materials, Reference Materials, Auxiliary Materials and Content

An appropriate text(s) and materials will be chosen at the time the course is to be offered from those currently available in the field. Examples include:

Texts:

Computer Science: A Structured Approach Using C++,

Forouzan and Gilberg, 2nd edition.

An Introduction to Programming With C++,

Zak, 2nd edition.

Materials:

Text(s) may be supplemented with:

Articles and/or handouts prepared by the instructor

Other:

Appropriate films, videos or internet sites

Television programs

Guest speakers

Other instructional aids
9.
Recommended Course Requirements and Evaluation
Specific course requirements are at the discretion of the instructor at the time the course is being offered. Suggested requirements might include, but are not limited to:

Written or oral examinations

In-class exercises

Programming assignments

Homework assignments

Quizzes

Projects or research (written reports and/or oral class presentations)

Attendance and/or class participation

10.
Methods of Instruction

Instructional methods vary considerable with instructors and specific instructional methods will be at the discretion of the instructor teaching the course. Suggested techniques might include, but are not limited to:

Lecture (PowerPoint or similar)

Problem solving and design exercises

Hands-on laboratory exercises

Group or individual projects

Class discussions or guest lectures

Audio, visual or presentations involving the internet

Student class presentations

Field trips

Other contemporary learning techniques (e.g., Service Learning, Co-op, School-

to-Work, self-paced, etc.)
