

Teaching the Fundamentals of Computer Vision and Deep Learning

Debasis Bhattacharya, JD, DBA University of Hawaii Maui College ATE 2019 – Breakfast Roundtable <u>debasisb@wawaii.edu</u>

http://maui.hawaii.edu/cybersecurity

October 25, 2019

ARTIFICIAL INTELLIGENCE

A technique which enables machines to mimic human behaviour

MACHINE LEARNING

Subset of AI technique which use statistical methods to enable machines to improve with experience

DEEP LEARNING

Subset of ML which make the computation of multi-layer neural network feasible

Source: Edureka

Source: TensorFlow for R - RStudio

Convolutional Neural Network - ConvNet

Image - Matrix of Pixels

Channels - Color images have 3 channels - RGB. Each Pixel Value ranges from 0 to 255

Grayscale Image -One channel, values 0 (white) to 255 (black)

Convolution - Extract Features

1	1	1	0	0
0	1	1	1	0
0	0	1	1	1
0	0	1	1	0
0	1	1	0	0

Image

4

4

Input Image, 5x5

3x3 Filter, or Kernel or Feature Detector Convolved Feature

Move 3x3 Filter over 5x5 Input Image, one pixel at a time (STRIDE) and compute matrix multiplication. Convolved Feature or Feature Map

Operation	Filter	Convolved Image
Identity	$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$	C.
	$\begin{bmatrix} 1 & 0 & -1 \\ 0 & 0 & 0 \\ -1 & 0 & 1 \end{bmatrix}$	
Edge detection	$\begin{bmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{bmatrix}$	
	$\begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$	
Sharpen	$\begin{bmatrix} 0 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 0 \end{bmatrix}$	
Box blur (normalized)	$\frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$	S.
Gaussian blur (approximation)	$\frac{1}{16} \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix}$	S

Different values of the Filter or Kernel will create different Feature Maps from the Input Image

Examples of Features -Edges, Blurs, Sharpen

Parameters Depth - # of Filters Stride - movement across image Zero-Padding - apply filter to edges

Forward Propagation

Backward Propagation

Calculate Gradient of error Use Gradient Descent to update filter weights Reduce Output Error or Training Loss Epoch = Forward + Backward Propagation Hyperparameter = Learning Rate Validation Data -> Forward Propagation Only Minimize Training Loss & Validation Loss Control Overfitting using Dropouts Allow for Generalization of New Test Data

Image Segmentation using CNN

Harness AI at the Edge with the Jetson TX2 Developer Kit

The Jetson TX2 Developer Kit gives you a fast, easy way to develop hardware and software for the Jetson TX2 AI supercomputer on a module. It exposes the hardware capabilities and interfaces of the developer board, comes with design guides and other documentation, and is pre-flashed with a Linux development environment. It also supports NVIDIA Jetpack—a complete SDK that includes the BSP, libraries for deep learning, computer vision, GPU computing, multimedia processing, and much more.